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Sample Size

As noted earlier, the number of units for the sample is usually the first question
addressed by a study team to the sampling consultant. Response to the question

must await information on other design and sampling choices. Why is the sample size
important for a study? Sample size is the most potent method of achieving estimates
that are sufficiently precise and reliable for policy decisions or scientific inquiry. The
impact of increasing sample size on the estimates of the sampling variability is shown
in Figure 7.1. The downward sloping curve indicates that sampling variability decreases
as the sample size increases. However, the gain in precision is greater for each unit
increase in the smaller sample size range than the larger sample size range.

Increasing sample size obviously has a cost. Larger samples require more expenditures
for collecting data, especially when interviews are being utilized; following up on
nonresponse; and coding and analyzing data. When increasing the sample size is done
at the expense of effort invested in follow-up of nonrespondents, for instance, the total
error may rise due to non-sampling bias. Choice of a sample size cannot be considered
in a vacuum. Once again, trade-offs in cost, total error, and other design choices must
be considered.

To begin the process of making a sample size choice, a number of factors must be
examined sequentially. Prior to beginning the process, the determination of the tolerable
error of the estimates or power of the analysis must be made. Policy studies, though
they serve different purposes than studies oriented toward testing theory, are subject

to the same criteria. The determination of tolerable error or power needs for a policy
study tends to be defined more by the use for the information in the particular situation
at hand than by conventional standards.

For policy studies, it is useful to involve policymakers in making the determinations
about the precision required of the data. Their responses can be elicited by posing
“what if” type questions, such as, “Let's say the study estimates that 60% of the elderly
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are in need of services, but we are only reasonably confident that somewhere between
50% and 70% need services. Is the 20% gap too large for the information to be useful?”
or alternatively,

[p. 118 | ]

Figure 7.1. Relationship Between Sample Size and Standard Error
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You know that test scores of disadvantaged students are approximately
at the 38th percentile on standardized tests. Considering the cost of this
program and available alternatives, would you consider the program
successful if scores were improved to the 40th percentile? How about
the 43rd percentile?

Variations on these questions can be developed to fit the particular policy study. Cost
estimates can be explicitly incorporated into the discussion to provide direct information
about the relationship between cost and sampling variability.

The factors to be examined in the choice of sample size include:
Efficient sample size
Implications of the design for efficient sample size
Implications of the sample size and design for subpopulation analysis
Adjustments for ineligibles and nonresponse

Expense of the design given the sample size
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Credibility

Each of these factors is discussed below.
EFFICIENT SAMPLE SIZE

Efficient sample size is based on an estimate of the sample size required to limit
sampling variability to the desired level. For a study that is essentially descriptive, the
sampling variability is set in terms of the level of precision [p. 119 | ] needed for the
estimates. Analytical studies use the size of the effect that the study estimates should
be able to detect. Generally, efficient sample size estimates assume a simple random
sample design, although with more information for studies that are frequently repeated,
design-specific estimates can be developed.

The computation of efficient sample sizes for descriptive studies begins with the
tolerable error (te): the standard error times the t-value for the selected confidence level.
The variance or standard deviation of the variable must be estimated, also. Usually, the
standard deviation can be estimated from a previous study. Some adjustment may be
necessary if the target population for the study is different than the target population for
the previous study.

Another method for estimating the standard deviation is the use of a small pilot study.
Sometimes as few as 50 cases can provide a useful estimate. It is best to select the
cases randomly from the target population, but this option is not always available.
Judgment must be applied to determine whether the target population estimate would
be expected to differ from the pilot study population. If so, an adjustment should be
made.

A third method that obtains a rough estimate of the standard deviation can be obtained
by dividing the range by four. If the highest and lowest value of a variable can be
obtained from data or expert opinion, the estimate of the range can be plugged into the
formula and the standard deviation estimated.
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A final method of estimating the variance is often used when proportions are the
statistics of interest. This method simply assumes the maximum variance that occurs
when p = .5. The product of p(1 - p) in this case is .25, the largest possible product of a
proportion or a worst-case scenario.

The formulas for the efficient sample size for means and proportions are shown in Table
7.1 along with an example calculation for each.

In the first computation, the standard deviation is estimated to be 37.6. A tolerable error
of 1.764 is used, which relates to a standard error of .9 units and a t-score of 1.96. The
efficient sample size is 1,745 before the finite population correction (FPC) is applied,
and 1,617 after. In the second example, the tolerable error of 2% yields a standard error
of 1%. That is, the researchers will be 95% confident that the estimate of the proportion
will fluctuate as much as 2% above or 2% below the true proportion. To obtain this level
of precision, a sample size of 2,300 is needed after taking the FPC into account.

Even though these calculations are relatively straightforward, elementary statistics
textbooks often present tables that give efficient sample sizes [p. 120 | ] and
associated standard errors. These tables usually are based on the assumption that an
estimate of a proportion is the objective of the study and that the maximum assumption
for the proportion (p = .5) is appropriate. Also, a finite population correction is not
applied. These tables fit a very limited number of situations and should be used with
caution.

TABLE 7.1 Efficient Sample Size for Means
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s= 316 N = 22,000
re = 1.764 1= 196
S = felt = 9

n' = (37.6)/(1.764/1.96)

n' = 1,745

n = 1,745/1 + (1,745/22,000)]
n = 1617

where: 5 is standard deviation estimate
N is the population size
te is the tolerable error
1 is the t-value for the desired confidence level
sr is the allowable standard error
n' is the sample size without finite population correction
n is the sample size with the finite population correction

Efficient Sample Size for Proportions
p=.6 I-p= 4
tem 02 N = 1,100,000
3 = .01 1= 196
n' = (6X.4)M(.02/1.96)
n' = 2,305
n = 2,305/1 + 2,305/1,100,000)
n = 2,300

where: p is a proportion of the sample
re is the tolerable error
Nis the population size
35 is the standard error of the proportion

n’ is the sample size without the finite population comrection

n is the sample size with the finite population correction

SAGE Research Methods

For analytical studies, efficient sample size calculations quickly exceed the capacity of
this sampling text. Interested readers should begin with Lipsey (1989) in their quest for
information on power analysis. An example of one study may adequately explain the

concept of power analysis.

[p. 121 | ]

Sample size for each group (total sample |Sentence length differences (months)

Size =n x 2)

n - - FALY
b= = %)/ (5, + 55,7)

30 16

50 12

75 10

115 8

295 5
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775 3

where: n is the sample size for each group

X
B

is the mean sentence length for blacks

X
w

is the mean sentence length for whites

A study is to be undertaken to determine if differences exist between sentence lengths
of whites and minorities convicted of the same crime. The study will analyze the
differences between means of the samples of whites and blacks using the following
formula:

sz

For this study it is determined that the researchers will risk an error in finding a
difference only 5 times out of 100 if no difference exists (i.e., t = 1.96).

Furthermore, the standard deviation of sentence lengths for rape of 32.3 months for
minorities and 29.3 months for whites can be assumed from an earlier study. Finally,
equal sample sizes are assumed in the calculation (n

1

=n

). Using these assumptions, a sample size for each sample of 30 cases is needed to
detect a 16-month difference in sentence lengths. However, if the sentence length
difference is expected to be only 3 months, each sample would need 775 observations
to detect the difference. Sample sizes required for various expected differences are
shown in Table 7.2.
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The estimates clearly show that smaller expected effects require larger samples to
detect the effect. This relationship generalizes to other analytical statistics. The specific
formula for the calculation of power can become quite complex. Lipsey (1989) provides
an excellent reference for guiding a researcher through the factors that affect the
sensitivity of a design to detect relationships. A sampling expert is often required to
assist in the computations when power is the overriding concern.

[p. 122 | ]

IMPLICATIONS OF THE DESIGN FOR
SAMPLE SIZE

While sample size has the most direct impact on the efficient sample size, the design
also has an impact. The efficient sample size calculations assume simple random
samples. If the sample design deviates from simple random sampling, the efficient
sample size is likely to vary also. Sampling variability increases when cluster sampling
is used; it decreases when stratification is used.

The design effect (deff) is a direct way of addressing the impact of design on sampling
variability. The design effect can be multiplied by the expected sampling variance (

n =
(e) (r)

' 1620
(.95)(.85)

n' = 2006

) in the calculation of an efficient sample size to adjust for the impact of the design.
The design effect is the ratio of the sampling variance of the design to the sampling

=
I
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variance, assuming a simple random sample (Kish, 1965; Sudman, 1976). The square
root of the design effect is used more often in practice to make it comparable to the
standard error.

To incorporate the effect of the design into the calculation of the efficient sample size,
information about the expected design effect is needed prior to the execution of the
sample design. Naturally an estimate of the design effect is the best that a researcher
can provide. For stratified samples, the design effect for means is likely to range from .5
to .95. The actual deff will depend on the number of strata and the correlation between
the stratification variables and the variable studied.

Cluster samples can be expected to have a design effect greater than one. A common
range would be 1.5 to 3.0. Obviously, a range of this size would have quite an impact on
the efficient sample size. Determining the estimate of effect depends on characteristics
of the particular design. The number of clusters, the homogeneity of the cluster
members, and the use of stratification have an important bearing on the actual design
effect.

Multistage samples, also, should be adjusted for design effects: “Sampling errors in
multi-stage random samples are almost always larger than in unrestricted random
sampling, and the effect of stratification at the first (and possibly later) stages is to
reduce this excess but almost never to eliminate it” (Stuart, 1963, p. 89). Stuart offers
a rough rule of a 1.25 to 1.50 increase in the sampling error. These numbers would be
squared to multiple times the sample variance.

More recent work (Kish & Frankel, 1970; Frankel, 1971) gives the square root of

the design effect for a variety of multistage samples and a variety of estimates.

Two conclusions of Kish and Frankel are particularly relevant here: “Standard

errors computed by machine programs, based on srs assumptions, were not gross
underestimates [for multivariate analyses]”; [p. 123 | ] and “Design effects were
shown to be estimable and of appreciable magnitudes for standard errors of regression
coefficients” (p. 1073).

TABLE 7.3 Sample Size and Subpopulation Analysis Analyzing 8 Equal-Size Districts
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n =1,620 s= 1376 =9
n, =1,620/8 = 203
55 =37.6/(203)* = 2.64
where: n is entire sample size

ny is sample size for each district

s is standard deviation estimate

5x is standard error of the mean for full sample

sq¢r is standard error for district subsample

In empirical investigations, the design effect was found to be larger for means than

for regression coefficients. The rough guidance provided by Stuart (1963) proved
reasonably accurate for the square root of the design effect for means. The square

root of the design effect for regression coefficients tended to range from 1.06 to 1.30.
Using the deff in formulas for efficient sample size can mean significant increases to the
calculated sample size.

SUBPOPULATION ANALYSIS

Thus far, the consideration of sample size has assumed that the entire target population
will be analyzed together. In many cases, subpopulations are of interest also. For
example, in the frail elderly study a researcher may wish to single out females in the
target population for a separate study. Another researcher may wish to analyze regions
of the state separately. The subpopulation analyses have less precision than the
analysis of the entire sample as a group. Fewer cases for the subpopulation increases
sampling variability for the analysis by subpopulation, although smaller standard
deviations for the subpopulation may offset the increase to some extent.

The impact of subpopulation analysis is shown in an example where program

analysts are to estimate the length of time in weeks that cases have been open in

a social service agency (Table 7.3). The efficient, full sample size is approximately
1,620. Conducting a subpopulation analysis of eight districts, where the districts are
approximately equal size, would yield district subsamples of 203 units. The standard
error of 2.64 for the district sub-samples compares with a standard error of .9 for the
entire sample. This standard error is 2.9 times the standard error for the total sample.
The total size of the 95% confidence interval for the districts will be 10.3 (2.64 x [p.
124 | 1 1.96 x 2). If district estimates are important, the researchers must consider
whether this confidence interval, £5 weeks, is sufficiently precise for the purpose of the
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study. If not, the researcher must consider the cost of the total sample size necessary to
increase the precision of each district to the tolerable error level.

ADJUSTMENTS FOR INELIGIBLES AND
NONRESPONSE

In choosing the size of the sample, the researcher must remember that the precision
of the sample is estimated by the number of target population members for whom data
are actually obtained. Two reasons for not obtaining usable information for some of the
sample selected are:

Ineligibles in the sampling frame
Nonresponse

Ineligibles include those listed on the sampling frame that are not members of the
target population. Ineligibles contribute to increased sampling variability by lowering
the actual sample size. For example, in the North Carolina Citizen Survey a resident of
Virginia working and paying taxes in North Carolina could conceivably be included on
taxpayer rolls. This individual would be ineligible for a poll of residents. Analogously,
using random digit dialing for a special population survey will result in calls to many
residences that do not contain a member of the target population and are screened out
of the sample. The Florida study is an example.

Nonresponse occurs for a variety of reasons, including inability to contact the
respondent and refusal to respond. Nonresponse can create non-sampling bias in
the sample, because a portion of the population is under-represented in the sample.
Evaluation of potential nonresponse bias will be examined in the next chapter. Here
an adjustment to the efficient sample size is offered to compensate for the impact of
nonresponse on sampling variability.

Impacts from ineligibles and nonresponse can be compensated for by dividing
the efficient sample size by the proportion of eligibles times the proportion of
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respondents. An efficient sample size of 1,620 will be adjusted to an initial sample
size of approximately 2,006 when .95 of the sampling frame is estimated to be eligible
and .85 of the sample are expected to respond.

[p. 125 | |
X = (n/n)(X;) + (na/n)(x,)

where n' is the adjusted sample size,

n is the efficient sample size,

e is the proportion of eligibles on the list, and
r is the proportion of respondents expected.

The higher the response rate the fewer the initial contacts that have to be made as

a result of adjusting the sample size. Extensive follow-up procedures, while costly,
have cost savings resulting from smaller initial sample sizes that can partially offset the
additional costs.

EXPENSE

The cost of the data collection can be reasonably examined at this point. The
examination should include costs arising from:

Except for the first two, these costs vary by the size of the sample selected or the
number of responses obtained. Follow-up procedures are extremely important in

the cost calculation. Investing in follow-up procedures can reduce the size of the
sample selected by increasing the response rate, reduce costs associated with initial
contacts, and eliminate the costs of nonresponse bias evaluation by reducing potential
nonsampling bias. If, for example, [p. 126 | ] the response rate in the example cited
above could be increased from 85% to 95%, the adjusted sample size could be reduced
from 2006 to 1795. The expenses associated with attempting to contact the additional
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211 sample units, acquiring addresses or phone numbers, mailing questionnaires,
calling for appointments, and so on, may be more than an intensive follow-up and
reduce nonsampling bias.

CREDIBILITY

An efficient sample size is not always a credible sample size. Often users of information
mistrust sample information that they perceive to be based on too few cases.
Alternatively, the audience for the information may have a conception of differences
across regions or unique local conditions that requires allocation of a larger sample.

Sometimes these concerns arise as a function of population size. Computation of

an efficient sample size, as shown, has little to do with the size of the population. In
fact, the population size is used only in the finite population correction factor. Yet the
perception exists that sample size should be a percentage of the population size—often
10% is the figure used. This perception is not accurate. Sample sizes of 1,500 to 2,500
used in general population polls and voter surveys are common, although on occasion
the question arises, how can 1,500 individuals speak for citizens in this country? Media
use and accuracy of the polls have overcome much skepticism, perhaps too much.

Smaller sample sizes used for medical research and other studies of special
populations are sometimes viewed with incredulity. Skepticism about sample credibility
is exacerbated by departures from proportional allocation of the sampling units in

the random selection process. Lack of proportional distribution of the sample, or

in a more extreme case lack of representation of some legislative districts, may be
grounds for dismissing the sample information in legislative policy-making. The fallacy
of overreliance on the sample proportions mirroring population proportions is discussed
Chapter 8.

For example, in an evaluation where a sample of 60 licensed homes for adults was
selected for inspection and data collection, program administrators refused to accept
the results. After a census inspection effort of over 400 homes, percentages of homes
with problems differed by no more than 3% across several variables being observed.
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Attacks on credibility of the sample cannot be eliminated in studies that have policy
impacts. Prior planning and attention to factors that may serve to undermine sample
credibility may thwart undue attacks. The researcher [p. 127 | ] [p. 128 | ] should
ask questions of the audience for whom the results are intended, pertaining to sample
characteristics arising from the design. Expressed concerns, such as sample size

by region, may enable the researcher to alter the design to accommodate potential
criticisms.

Figure 7.2. Sensitivity Curve for Means Using Jackknife Method
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SAMPLING SMALL POPULATIONS

Frequently researchers confront the question of how large a sample to select from small
populations. Populations such as counties, probation officers, or students enrolled in
Latin courses are sometimes too large to allow data collection on the entire population
due to resource constraints. However, potential sample sizes appear too small to
produce reliable results. In these cases it is often necessary to consider certainty
selections for target population members that must be represented for the sample to
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be credible. Results must be appropriately weighted to account for the probability of
selection.

Another technique that can be used with small samples involves the analysis of outliers
in the data. Small samples are particularly vulnerable to outliers. Outliers can unduly
influence the estimates produced by the sample. The difficult question is when is an
observation an outlier and when is it a reasonable representation of the population?
Techniques for outlier identification and statistics that provide reliable, robust estimates
have been developed in recent years (Andrews, Bickel, Hampel, Huber, Rogers, &
Tukey, 1972; Barnett & Lewis, 1984).

One technique, jackknifing, is extremely useful and simple (Efron, 1982). Jackknifing
involves the iterative removal of a single observation and calculation of the sample
estimates, until each observation has been removed from the calculation one time. The
estimates can then be ordered and plotted to show the sensitivity of the estimate to
any single observation. Figure 7.2 shows the sensitivity of the mean for one sample.
The sensitivity curve exhibits a range of 128 units, indicating a strong influence of the
extreme values on the data.

SUMMARY

The selection of the sample size depends upon the amount of sampling variability

that can be tolerated, the variability of important variables, the design effect, need

for subpopulation analysis, ineligibles and nonresponse, cost, and credibility factors.
These factors should be considered in combination when evaluating sample design
alternatives. The formulas provided in this chapter allow the researcher to estimate the
sample size needed when considering these factors.
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